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Quasiperiodic patterns in Rayleigh-Bénard convection under gravity modulation

Ulrike E. Volmar and Hanns Walter Mu¨ller
Institut für Theoretische Physik, Universita¨t des Saarlandes, D-66041 Saarbru¨cken, Germany

~Received 24 April 1997!

We investigate nonlinear three-dimensional convection under gravity modulation. Depending upon modu-
lation frequency and amplitude, unstable modes in harmonic or subharmonic temporal resonance with the
mechanical drive can be observed. We focus on a situation where both modes compete. In non-Boussinesq
fluids the dominating interaction mechanism is a nonlinear triad wave-vector resonance. We construct a
minimum Galerkin model which describes the competition between several regular convection patterns. Our
results indicate that squares or quasiperiodic patterns with a 12-fold rotational axis are the preferred convection
structures.@S1063-651X~97!00911-2#

PACS number~s!: 47.54.1r, 47.27.Te, 47.20.Ky
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I. INTRODUCTION

Thermal convection under temporal modulation of t
control parameter gives rise to new linear and nonlin
properties compared to the classical unmodulated Rayle
Bénard convection@1#. On the linear level the critical Ray
leigh numberRc and the critical wave numberkc for the
onset of modulated convection were investigated@2–5#. It is
well known @3# that a fluid layer heated from above can
destabilized if the mechanical vibration is sufficiently stron
Unstable modes in either synchronous or subharmonic r
nance with the external modulation appear. Under spe
circumstances bicritical situations occur, in which a h
monic and a subharmonic mode become unstable at the s
Rayleigh number but at different wave numbers.

On the nonlinear level two principal methods of inves
gation have been proven to be useful. The Galerkin te
nique expands the spatial dependence of the hydrodyna
field in an appropriate set of test functions, and thus redu
the partial field equations to ordinary differential equatio
By considering only a few Galerkin modes analytic
progress can be made@5,6#, otherwise fully developed two
or three-dimensional convection can be treated by comp
simulations@7–9#. The alternative method derives amplitud
equations by a systematic perturbation expansion around
conductive state. These equations describe the slow temp
and spatial dynamics of the critical convection mode and
useful to predict patterns and secondary instabilities or tr
sitions @10,11#. We also mention a number of experimen
dealing either with the onset of the instability@12–14# or
with nonlinear pattern formation@15,16#.

In the present paper we concentrate on pattern forma
close to bicritical situations, where a subharmonic and a h
monic instability mode compete. This point has not receiv
any attention in the past. By virtue of the interplay betwe
two different length scales we expect the occurrence of n
nontrivial convective structures. Our investigation is mo
vated by the observation of a quasiperiodic pattern in
Faraday instability@17#, when operated close to a bicritica
instability. These structures can be pictured as two set
hexagons superimposed onto each other, giving a 12-
rotational symmetry. As this invariance is incompatible w
561063-651X/97/56~5!/5423~8!/$10.00
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the translational order of a periodic tiling, these patterns
denoted as quasiperiodic.

In systems with quadratic nonlinearities showing tw
dimensional patterns, the generic nonlinear interaction
three-wave-vector resonance. In a monocritical situati
whereone circle of critical wave numbers is unstable@18#,
this mechanism is known to force hexagonal patterns@19–
21# close above the onset of the instability. This argum
applies for Rayleigh-Be´nard convection in non-Oberbeck
Boussinesq~NOB! fluids. In OB fluids the up-down symme
try of the system prohibits the triad wave-vector resona
and instead convective motion in the form of rolls occu
@20,21#. In the present paper we want to take advantage
the three-wave-vector coupling and thus introduce non-
effects as a weak perturbation. Our aim is to generalize
triad interaction for bicritical situations and to show how th
mechanism can be used to force complicated convec
structures.

The method of investigation is a multimode Galerk
technique, which gives sufficient complexity to allow th
competition between roll, square, hexagonal, and quasip
odic structures. After introducing the system and establish
the basic evolution equations in Sec. II, we perform a lin
analysis~Sec. III! to get a complete view over the stabilit
chart, and the bicritical points. A previously published pap
@8# appears to be incomplete as important stability branc
are missing. In Sec. IV we proceed to the nonlinear part
discuss in greater detail the three-wave-vector resona
when applied to bicritical situations. To achieve our obje
tive we have to release the OB approximation and introd
a weakly temperature-dependent viscosity. A model sys
of 25 ordinary differential equations is obtained by invokin
the Galerkin technique~Sec. V!. These equations are solve
by numerical integration. Besides square patterns we
observe quasiperiodic structures with a 12-fold orientatio
order. However, the predicted parameter region is pres
ably difficult to achieve experimentally. Section VI summ
rizes the results and discusses the limitations of our
proach.

II. THE SYSTEM AND BASIC EVOLUTION EQUATIONS
IN OB APPROXIMATION

A fluid layer of depthd and infinite lateral extent is
bounded in the verticalz direction by two horizontal plates
5423 © 1997 The American Physical Society
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For an incompressible fluid the balance equations for m
momentum, and energy read

] tuW 52~uW •¹W !uW 1n¹2uW 2
1

r0
¹W p2g~ t !@12a~T2T0!#eW z ,

~2.1!

] tT52~uW •¹W !T1k¹2T, ~2.2!

¹W •uW 50, ~2.3!

whereuW (rW,t)5(u,v,w) is the velocity field,p(rW,t) the pres-
sure, andT(rW,t) the temperature field. For the time being, t
material parameters, kinematic viscosityn, thermal expan-
sion coefficienta, and heat diffusivityk are assumed to b
constant. This is the essence of the OB approximation
thermal drive of the setup is imposed by an external temp
ture differenceDT between the covering plates. We indica
heating from above by a negativeDT. The apparatus
is also subjected to a mechanical drive by shaking it
vertical direction. In the comoving frame of reference th
gives rise to a time-dependent gravity modulati
g(t)5g0(11« cosvt), where« and v are the mechanica
control parameters.

For weak mechanical and thermal drive, the fluid rema
in its rest stateuW 50W , where the pressurep balances the
time-dependent gravity fieldg(t). The temperature profile o
this purely conductive state varies linearly according
T5T02zDT/d, whereT0 denotes a reference temperatu
in the midplane between the plates.

In order to investigate the nonlinear convective proper
it is useful to introduce the deviationu from the conductive
temperature profile. Furthermore we use dimensionless u
where length is scaled byd, velocity byk/d, time byd2/k,
pressure byr0k2/d2, and temperature bykn/(ag0d3). The
pressure in Eq.~2.1! can be eliminated by operating twic
with curl, giving

] t¹
2uW 5¹W 3¹W 3~uW •¹W !uW 1s

g~ t !

g0
S 2]x]z

2]y]z

]x
21]y

2
D Q1s¹4uW ,

~2.4!

] tQ52~uW •¹W !Q1Rw1¹2Q. ~2.5!

Here we have introduced two dimensionless numbers,
Rayleigh numberR5(ag0d3DT)/(nk) measures the ther
mal drive, while the Prandtl numbers5n/k characterizes
the fluid. The equations of motion are supplemented by
boundary conditions

Q50, w50, ]zw50

at

z561/2, ~2.6!

corresponding to rigid~i.e., no-slip!, perfectly heat conduct
ing plates at the bottom atz521/2 and the top atz51/2.
Note that the equations of motion and boundary conditi
s,

A
a-

n

s

s

its

e

e

s

are invariant under a reflection at the midplane between
plates. This property is closely related to the OB approxim
tion.

III. LINEAR STABILITY ANALYSIS

In the absence of a mechanical drive,«50, the problem is
reduced to the classical Rayleigh-Be´nard problem @22#.
Heating of the device from below gives rise to an unsta
density stratification and convection sets in beyond a crit
Rayleigh numberRc51708. Due to the up-down symmetr
mentioned above, the vertical dependence of the hydro
namic eigenfunctions is of definite parity~w, u even andu,
v odd!.

If the fluid layer is subcritically heated from below or b
heating from above, convective motion can also be obtai
by applying a simultaneous gravity modulation («.0). Gre-
sho and Sani@3# used a Galerkin technique for an approx
mative treatment of the linear stability problem. We make
similar ansatz for the hydrodynamic fields

w~x,z,t !5X~ t !eikxC1~z!,

u~x,z,t !5~ i /k!X~ t !eikx]zC1~z!,

v~x,z,t !50,

Q~x,z,t !5Y~ t !eikx cospz, ~3.1!

where k denotes a wave number in lateral direction a
C1(z) the first Chandrasekhar function@22#. The latter one is
more appropriate@23# than the trigonometric functions use
in Ref. @3#. Linearizing Eqs.~2.4! and ~2.5!, inserting Eq.
~3.1!, and projecting onto the modes leads to a coupled se
ordinary differential equations for the amplitudesX(t) and
Y(t),

] tX52h1sX1h2s~11« cosvt !Y, ~3.2!

] tY52h3Y1h4RX. ~3.3!

The coefficientshj are given in Appendix A. By solving Eq
~3.2! for X and inserting the result in Eq.~3.3!, the linear
stability problem is reduced to the evolution equation o
parametrically driven oscillator~Mathieu oscillator!

Ÿ12gẎ1~d1a cosvt !Y50, ~3.4!

with k-dependent coefficients:

2g5k21p21sh1~k!, ~3.5!

d5sh1~k!~k21p2!2sh5~k!R, ~3.6!

a52sh5~k!eR. ~3.7!

The stable ~unstable! conductive state atR,Rc51708
(R.Rc) corresponds to the stable hanging~unstable in-
verted! equilibrium position of the oscillator. From th
theory of the Mathieu oscillator it is known that a modul
tion of gravity can both stabilize the unstable rest state
destabilize the stable rest state. It is the latter case which
are dealing with in the following.

To proceed with the linear analysis we invoke the Floq
theorem and write the solutions of Eq.~3.4! in the form
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56 5425QUASIPERIODIC PATTERNS IN RAYLEIGH-BE´ NARD . . .
Y~ t !5emtP~ t !5emt (
n52`

1`

pneinvt. ~3.8!

P(t) is a periodic function with the period 2p/v of the drive
and m is the Floquet exponent. As Eq.~3.4! is of second
degree, only two Floquet multipliers are possible. With t
requirement of a neutrally stable solution~stability bound-
ary!, they have to be61 corresponding to the Floquet exp
nentsm50 or m5 iv/2. This is the reason the Mathieu o
cillator resonates either harmonically or subharmonica
with respect to the external drive@24#. In the former~latter!
case integral~half-integral! multiples of the drive frequency
v contribute to the Fourier spectrum ofY(t). Introducing the
Fourier decomposition ofP(t) into Eq. ~3.4! yields an
infinite-dimensional eigenvalue problem~Hill’s infinite de-
terminant @24#!, with the eigenvalueR depending on the
wave numberk and the control parameters« andv. A mini-
mization ofR(k,«,v) with respect tok yields the threshold
Rc(«,v) and the critical wave numberkc(«,v). For practi-
cal purposes the infinite determinant can be approximate
an appropriate cutoff. We used up to 120 Fourier mode
achieve an accuracy of a few percent. In Fig. 1 the criti
Rayleigh numberRc is shown as a function of the modula
tion frequencyv, while Fig. 2 depicts the correspondin
critical wave numberukcu. To compare with earlier work
@3,8# we use the shaking elevation«/v2 as a mechanica
control parameter instead of the acceleration« itself. At large
frequenciesv the system always responds subharmonica
(S), while we observe an alternating sequence of harmo
(H) and subharmonic instabilities towards smaller frequ
cies. This observation is in partial compliance with the e
lier results of Cleveret al. @8# ~dashed lines in Figs. 1 and 2!.
While their subharmonic branch at highv agrees well with
our findings, their alternating cascade towards smallerv is
only rudimentarily reproduced. We confirmed our calcu
tion within an accuracy of 3.5% with the help of contr
runs, done with an improved spatial resolution of the eig

FIG. 1. Critical Rayleigh number as a function of the modu
tion frequency for fixed modulation amplitudese/v251025, 1024,
and 1023 and Prandtl numbers57. The Rayleigh number is nega
tive since heating is imposed from above. Dashed lines corresp
to the results of Cleveret al. @8#. Capital lettersS and H denote
subharmonic and harmonic resonances. A few bicritical points
indicated by symbols.
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functions@taking four Galerkin modes in Eq.~3.1! instead of
only one#. The instability branches missing in Ref.@8# might
be due to an insufficientk resolution in the minimum finder
for kc . In Fig. 3 we explain a typical subharmonic to ha
monic transition~open circle in Fig. 1! by means of the neu
tral curvesR(k): For an excitation frequencyv5245 @Fig.
3~a!# the outer left subharmonic tongue provides the abso
minimum and thus determinesRc and kc

S . As v is reduced
@Fig. 3~b!# this tongue retracts until its minimum reaches t
level of the adjacent harmonic tongue. This is the bicritic
situation, where the wave number discontinuously jum
from kc

S to kc
H ~see Fig. 2!. During a further reduction ofv

@Fig. 3~c!# the harmonic instability preempts the subha
monic one. Eventually the latter one transforms into an i
before disappearing. By reducingv even further the domi-
nating harmonic tongue also starts retracting until it is p
empted by the next adjacent tongue, etc.

FIG. 3. Bicritical transition~s in Fig. 1! in the marginal stabil-
ity chart R(k). From ~a! to ~d! the forcing frequencyv is reduced.

-

nd

re FIG. 2. Critical wave number as a function of the modulati
frequency for fixed modulation amplitudese/v251025, 1024, and
1023. See Fig. 1 for further details.



in-
ar

c
ar

n
Th
d

s

the
f

sible
ec-
n-
ich

in-
ng

est-
en-
ows
tion
up-

-
ot

a

he
r
The
to

f

x-

5426 56ULRIKE E. VOLMAR AND HANNS WALTER MÜLLER
IV. THREE-WAVE-VECTOR RESONANCE AT THE
BICRITICALITY

In this section the focus is on the bicritical situations
dicated in Fig. 1 by symbols. The idea is that two subh
monic modes with lateral wave vectorsk1

S andk2
S nonlinearly

interact with a harmonic modek1
H by virtue of a triad reso-

nance@Fig. 4~a!#. The resonance mechanism is most effe
tive if k1

S and k2
S enclose an angle of 90° as a second h

monic wave vectork2
H can contribute to the coupling@Fig.

4~b!#. Since this interaction mechanism couples subharmo
and harmonic modes we denote it as ‘‘cross’’ resonance.
convection pattern driven by the cross resonance depicte

FIG. 4. Triad wave-vector coupling.~a! Two subharmonic
modes with wave vectorsk1

S,k2
S resonate with a harmonic mode o

wave vectork1
H . ~b! If the angle betweenk1

S andk2
S is 90° a second

harmonic wave vectork2
H contributes to the resonant energy e

change.
-

-
-

ic
e
in

Fig. 4~b! consists of two superimposed sets of squares~45°
rotated relative to each other! with respective wave number
ukSu and ukHu. The 90° angle betweenk1

S and k2
S requires a

wave-number ratio ofkH/kS.& at the bicriticality. In Fig. 5
we demonstrate how this ratio can be tuned by varying
driving elevation«/v2. We read off that the desired value o
& is achieved by the open triangle bicriticality~see Fig. 1! at
the following control parameters:

e/v258.326631023,

v565.6914, ~4.1!

whereRc.2925.945,kc
S.3.03, andkc

H5&kc
S.4.28 @25#.

The cross resonance discussed so far is not the only pos
triad wave-vector coupling. We observe that three wave v
tors of equal length may also resonate if their mutual e
closed angle is 120°. We denote this mechanism, wh
forces hexagonal structures@19,26,20,21#, as inner reso-
nance, since only wave vectors of the same length are
volved. Note that the inner resonance works only amo
modes withharmonictime dependence, whereas thesubhar-
monicsymmetry prohibits any inner resonance. Besides t
ing for an appropriate temporal behavior, the vertical dep
dence of the modes must also be checked, whether it all
a successful triad interaction. Indeed, the OB approxima
turns out to be problematic: As mentioned above, the
down symmetry of the system implies even~odd! z depen-
dencies of the eigenfunctionsw,u(u,v). Accordingly, the
convective derivativeuW •¹W in the evolution equations is par
ity inverting and thus the quadratic nonlinearities cann
couple to] tw and] tu in Eqs.~2.4!. To overcome this diffi-
culty we release the OB approximation and allow
temperature-dependent viscosity

n~T!5n0@12n1~T2T0!#. ~4.2!

The advantage of considering the viscosity in favor of t
other material parameters is that the evolution equation fou
and thus the basic conductive state remain unchanged.
necessary modifications of the theory are thus restricted
the Navier-Stokes equation, which transforms to@27#
re
FIG. 5. Wave-number ratiokc
H/kc

S , critical
Rayleigh numberRc , and modulation frequency
v as a function of the modulation amplitude«/v2

for a few bicritical points shown in Fig. 1. The
arrow indicates the parameter value whe
kc

H/kc
S.&. Prandtl number is fixed ats57.
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] tui52~uW •¹W !ui1s0¹2ui2] i p1s0(11ecosvt)

3Qd i ,31s1s0z¹2ui1s1s0~]zui1] iw!

2
s1

R
s0Q¹2ui2

s1

R
s0¹W Q•~¹W ui1] iuW !. ~4.3!

Here, s05n0 /k substitutes the former Prandtl numbers.
The supplementary linear and nonlinear terms are weigh
by the dimensionless coefficients15n1DT, which quanti-
fies the NOB effects.s1 is supposed to be small~e.g.,
s1.0.2 for a water layer subjected to a temperature diff
ence of 10 K!. Both the linear and the nonlinear NOB co
tributions break the up-down symmetry of the system. T
linear terms generate perturbations of orders1 in the eigen-
functionsw andu, which destroy the even parity of the ve
tical dependence. A small correction of orders1

2 to the criti-
cal Rayleigh numberRc results @27#. We want to ignore
these small effects in the following discussion.

V. NONLINEAR PATTERN SELECTION

We are interested in convection patterns close to a bic
cality, where modes with different wavelengths compete
the presence of NOB effects the dominating nonlinear in
action process close above the onset of instability is the t
wave-vector coupling, which appears here in the form of
inner and the cross resonance. Both mechanisms compe
they try to enforce hexagonal and square patterns, res
tively. A minimal Galerkin model, which allows the tw
coupling mechanisms to evolve freely, requires six late
Fourier modes on each unstable wave-number circleukSu and
ukHu. We therefore make the ansatz

uW 5¹W 3¹W 3eW zS (
n51

6

Xn
SeikWn

S
•rW1 (

n51

6

Xn
HeikWn

H
•rW1c.c.DC1~z!,

Q5S (
n51

6

Yn
SeikWn

S
•rW1 (

n51

6

Yn
HeikWn

H
•rW1c.c.D cospz

1Z sin 2pz. ~5.1!

The above representation of the velocity field implies that
vertical component of the vorticity vanishes. For lar
Prandtl numbers this is a reasonable approximation@21#. The
orientation of the lateral wave vectorskWn

S andkWn
H is shown in

Fig. 6. In analogy to the three-mode Lorenz model@28# for
convective rolls, we have introduced the modeZ to provide
nonlinear saturation. The model ansatz~5.1! gives sufficient
freedom for the system to develop a competition betw
line, square, hexagonal, or quasiperiodic patterns of 12-
rotational symmetry.

Inserting the ansatz into Eqs.~4.3! and~2.5!, and project-
ing onto the modes, leads to the following system of
ordinary evolution equations:
d

-

e

i-
n
r-
d
e
as
c-

l

e

n
ld

5

] tX1
S52 j 1s0X1

S1 j 5s0~11e cosvt !Y1
S1 j 2

s1

R
s0~Y4

S* X2
H

1X5
H* Y4

S!1 j 3

s1

R
s0~Y5

S* X3
S1X5

S* Y3
S!

1 j 4

s1

R
s0~Y5

H* X4
S1X4

S* Y2
H!,

] tX1
H52 j 6s0X1

H1 j 9s0~11e cosvt !Y1
H1 j 7

s1

R
s0~Y6

S* X3
S

1X6
S* Y3

S!1 j 8

s1

R
s0~Y5

H* X3
H1X5

H* Y3
H!,

] tY1
S5 j 10RX1

S2 j 11X1
SZ2 j 12Y1

S ,

] tY1
H5 j 10RX1

H2 j 11X1
HZ2 j 13Y1

H ,

] tZ52 j 14Z1 j 11(
i 51

6

~Yi
S* Xi

S1Yi
H* Xi

H!1c.c. ~5.2!

The remaining 20 equations forXi
S ,Xi

H ,Yi
S ,Yi

H ( i 52, . . . ,6)
follow by cyclic permutation of the mode indices. The n
merical values of the coefficients are given in Appendix B

To investigate the dynamics and pattern selection of
model we integrated the equations numerically with a four
order Runge-Kutta method. Starting from random initial v
ues we found two types of stable patterns: squares or a
siperiodic structure~Fig. 7!. The bifurcation diagram is given
in Fig. 8. The primary bifurcation is backwards towards
square convection pattern as shown in Fig. 7~a!. As outlined
in Fig. 4~b!, the structure consists of two sets of squares w
wave numbersukSu and, respectively,ukHu, rotated by 45°
relative to each other. All remaining modes of the model b
Z(t) exhibit zero amplitude. The observation of squares
dicates that the cross resonance dominates close to the

FIG. 6. Lateral wave vectors for a minimum Galerkin mod
which allows solutions in the form of lines, squares, hexagons
quasiperiodic patterns with a 12-fold symmetry axis.
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5428 56ULRIKE E. VOLMAR AND HANNS WALTER MÜLLER
FIG. 7. Density plots of the temperature field as observed in
numerical simulation of the model Eqs.~5.2! with « andv accord-
ing to Eq.~4.1!. ~a! Stable square pattern. Only the contribution
the subharmonic pattern withk5kS is visible. The relative ampli-
tude of the squares withk5kH is only 30%. See Fig. 4~b! for a
Fourier decomposition.~b! The quasiperiodic structure.

FIG. 8. Bifurcation diagram resulting from integration of th
model Eqs.~5.2!. Squares~diamonds! indicate stable square pa
terns with the subharmonic or harmonic time dependence b
preserved~broken!. Triangles denote stable quasiperiodic patte
as shown in Fig. 7~b!.
of the instability. The computer integration of Eqs.~5.2! also
provides the time dependences of the excited modes: Fo
square pattern we find that the subharmonic~harmonic! sym-
metry of the modes valid at the onset remains preserve
the weakly nonlinear regime.

At R'21000 a sudden break of this temporal symme
occurs: The harmonic~subharmonic! modesXH,YH (XS,YS)
receive additional half-integer~integer! frequency contribu-
tions in their Fourier sprectra. Due to this bifurcation, t
inner resonance amongS modes is no longer prohibited, an
both resonance mechanisms are able to take full advantag
the nonlinear coupling. As a result we observe atR..1010
a convective structure, in whichall modes depicted in Fig. 6
are excited. Figure 7~b! shows a shadowgraph of the corr
ponding temperature mode, which exhibits a 12-fold orie
tational order. By decreasing the control parameter again
find that the transition between squares and the quasiperi
patterns is slightly hysteretic.

VI. SUMMARY AND DISCUSSION

In this paper we investigate slightly nonlinear pattern fo
mation in Rayleigh-Be´nard convection under gravity modu
lation. We concentrate on bicritical situations, where a h
monic and a subharmonic instability compete. The criti
wave numberskc

H andkc
S , under which the two instabilities

occur, can be controlled externally. In the case of no
Oberbeck-Boussinesq fluids~e.g., with a temperature
dependent viscosity! the governing nonlinear interaction pro
cess is a three-wave-vector resonance. We disting
between a cross resonance, coupling harmonic to sub
monic modes, and an inner resonance, where only mode
the same wavelength are involved. While the inner resona
always forces hexagonal structures, the preferred pat
driven by the cross resonance depends on the wave-num
ratio ukc

H/kc
Su. This value can be controlled by varying th

amplitude and frequency of the gravity modulation. Here
consider the caseukc

H/kc
Su5& for which the cross resonanc

favors squares. Our aim is to show how the bicritical situ
tion can be used to force convective structures of nontriv
symmetry.

Our investigation is performed in terms of a Galerk
model. By expanding the spatial dependence of the hydro
namical fields in an appropriate set of test functions,
Navier-Stokes equations are reduced to a set of 25 ordin
differential equations. This is a generalization of the thre
mode Lorenz model@28# for convective rolls. The mode
truncation has been chosen such that the cross and i
resonance can freely evolve and compete. Regular con
tion patterns in the form of rolls, squares, hexagons, as w
as quasiperiodic structures are possible solutions of
model. The stability finally depends on the dynamics of t
model, which is investigated numerically. It turns out that t
cross resonance mechanism prevails close to the onset o
instability and square patterns appear at first. At higher R
leigh numbers, we observe a secondary hysteretic trans
towards quasiperiodic patterns. For this pattern the inner
the cross resonance can take full advantage of the triad w
vector coupling.

We point out that our model approximation suffers fro
the drawback of any few-mode Galerkin appoximation:

e

g
s
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some pattern appears to be stable, it is stable in a restr
sense, namely, with respect to ‘‘internal’’ perturbation
Only those disturbances which can be built up by the part
pating Galerkin modes can destabilize a solution. Exter
mechanisms~e.g., long wavelength instabilities like Eckhau
or zigzag! are not covered, because the lateral wave numb
of the participating Galerkin modes is fixed. This is simil
to the known three-mode Lorenz model for Be´nard convec-
tion, which is also unable to explain the Eckhaus instabil
So far, we cannot exclude that external mechanisms co
destabilize any predicted pattern and prevent its experime
observability.

Another approximation in our model is the use of Gal
kin modes withdefinite parity of the z dependencies. As
outlined above, this assumption is strictly valid only for O
fluids, where the up-down symmetry of the system holds
NOB fluids the parity of the eigenfunctions of the stabili
problem is no longer preserved. In our consideration we h
ignored these effects since they are weighted by the s
NOB parameters1 . A consistent way of taking these effec
into account would have doubled the size of our model s
tem.

Finally we mention that not all possible NOB effects ha
been considered in our model. As a representative exam
we introduced a temperature dependence of the visco
because it was easy to implement even though the sele
mechanism discussed here applies to any NOB effect. So
our discussion should be understood as a recipe to gen
interesting nonlinear structures in a convection experim
rather than giving an exact quantitative prediction.

APPENDIX A: COEFFICIENTS IN THE LINEAR
EQUATIONS

h152d1~k!/d2~k!, ~A1!

h2524pk2l2/@d2~k!~l42p4!#, ~A2!

h35k21p2, ~A3!

h458pl2/~l42p4!, ~A4!

h552~32p2k2l4!/@d2~k!~l42p4!2#, ~A5!

with
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.
ld
tal

-

n

e
all

-

le
ty,
on
far
ate
t,

d15~l22k2!2c11~l21k2!2c22l~k41l4!c3 , ~A6!

d25~l22k2!c12~l21k2!c21k2c3 , ~A7!

c15~l1sinh l!/~2l coshl/2!, ~A8!

c25~l1sin l!/~2l cosl/2!, ~A9!

c352
sinh l/2 cosl/21coshl/2 sin l/2

l coshl/2 cosl/2
, ~A10!

l54.730 04. ~A11!

APPENDIX B: COEFFICIENTS IN THE 25-MODE MODEL

s057, ~B1!

s150.86, ~B2!

j 1537.7371, ~B3!

j 2516.3287, ~B4!

j 3515.1799, ~B5!

j 459.54 917, ~B6!

j 550.421 322, ~B7!

j 6542.0464, ~B8!

j 7522.8824, ~B9!

j 8519.0064, ~B10!

j 950.590 41, ~B11!

j 1050.9862, ~B12!

j 1155.0989, ~B13!

j 12519.0457, ~B14!

j 13528.2217, ~B15!

j 14539.478. ~B16!
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