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Quasiperiodic patterns in Rayleigh-Berard convection under gravity modulation
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We investigate nonlinear three-dimensional convection under gravity modulation. Depending upon modu-
lation frequency and amplitude, unstable modes in harmonic or subharmonic temporal resonance with the
mechanical drive can be observed. We focus on a situation where both modes compete. In non-Boussinesq
fluids the dominating interaction mechanism is a nonlinear triad wave-vector resonance. We construct a
minimum Galerkin model which describes the competition between several regular convection patterns. Our
results indicate that squares or quasiperiodic patterns with a 12-fold rotational axis are the preferred convection
structures[S1063-651X97)00911-3

PACS numbdis): 47.54:+r, 47.27.Te, 47.20.Ky

I. INTRODUCTION the translational order of a periodic tiling, these patterns are
denoted as quasiperiodic.
Thermal convection under temporal modulation of the In systems with quadratic nonlinearities showing two-
control parameter gives rise to new linear and nonlineadimensional patterns, the generic nonlinear interaction is a
properties compared to the classical unmodulated RayleigHIrée-wave-vector resonance. In a monocritical situation,

Bénard convectiorf1]. On the linear level the critical Ray- WNereonecircle of critical wave numbers is unstatjles],
: o this mechanism is known to force hexagonal pattefrss-
leigh numberR. and the critical wave numbék, for the

: ) . _ 21] close above the onset of the instability. This argument
onset of modulated convection were investigdt@ds). It is applies for Rayleigh-Beard convection in non-Oberbeck-

well known [3] that a fluid layer heated from above can be goyssinesdNOB) fluids. In OB fluids the up-down symme-
destabilized if the mechanical vibration is sufficiently strong.try of the system prohibits the triad wave-vector resonance
Unstable modes in either synchronous or subharmonic res@nd instead convective motion in the form of rolls occurs
nance with the external modulation appear. Under specidl0,21]. In the present paper we want to take advantage of
circumstances bicritical situations occur, in which a har-the three-wave-vector coupling and thus introduce non-OB
monic and a subharmonic mode become unstable at the sarfiffects as a weak perturbation. Our aim is to generalize the

Rayleigh number but at different wave numbers. triad interaction for bicritical situations and to show how this
On the nonlinear level two principal methods of investi- ggfuccrlﬁrnéssm can be used to force complicated convection

gation have been proven to be useful. The Galerkin tech-

. ds th ial d q f the hvdrod . The method of investigation is a multimode Galerkin
nque expanads the spatial dependence ot the nyadro ynamfgchnique, which gives sufficient complexity to allow the

field in an appropriate set of test functions, and thus reducesympetition between roll, square, hexagonal, and quasiperi-
the partial field equations to ordinary differential equations.qgic structures. After introducing the system and establishing

By considering only a few Galerkin modes analytical the basic evolution equations in Sec. I, we perform a linear

progress can be mads,6], otherwise fully developed two- analysis(Sec. lll) to get a complete view over the stability

or three-dimensional convection can be treated by computarhart, and the bicritical points. A previously published paper

simulations[7—9]. The alternative method derives amplitude [8] appears to be incomplete as important stability branches
equations by a systematic perturbation expansion around tf#e missing. In Sec. IV we proceed to the nonlinear part and
conductive state. These equations describe the slow tempor@Scuss in greater detail the three-wave-vector resonance,

and spatial dynamics of the critical convection mode and aré/hen applied to bicritical situations. To achieve our objec-

useful to predict patterns and secondary instabilities or trant-'ve we have to release the OB approximation and introduce

sitions[10,11]. We also mention a number of experiments,a weakly_ tempe_rature-_depende_nt viscosity: A mod_el system
dealing either with the onset of the instabilifg2—14 or of 25 ordinary differential equations is obtained by invoking
with nonlinear pattern formatiofL5,16] the Galerkin techniquéSec. \j. These equations are solved

In the present paper we concentrate on pattern formatioRy humerical _intggrgtion. Besides Square patterns we also
close to bicritical situations, where a subharmonic and a ha'gbserve quasiperiodic structures with a 12-fold orientational

monic instability mode compete. This point has not receiveaorder' However, the predicted parameter region is presum-

any attention in the past. By virtue of the interplay betweena?bly difficult to achieve experimentally. Section VI summa-

two different length scales we expect the occurrence of ne\ﬂfc?:dt]he results and discusses the limitations of our ap-
nontrivial convective structures. Our investigation is moti- P :

vated by_the o_b_servatlon of a quasiperiodic pattern in the|, THE SYSTEM AND BASIC EVOLUTION EQUATIONS
Faraday instabilityf17], when operated close to a bicritical IN OB APPROXIMATION

instability. These structures can be pictured as two sets of

hexagons superimposed onto each other, giving a 12-fold A fluid layer of depthd and infinite lateral extent is
rotational symmetry. As this invariance is incompatible with bounded in the verticat direction by two horizontal plates.
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For an incompressible fluid the balance equations for massyre invariant under a reflection at the midplane between the
momentum, and energy read plates. This property is closely related to the OB approxima-
tion.

. 1 A
dli=—(0-V)U+vV2i— o0 Vp—g(O[1—a(T-To)]&,, IIl. LINEAR STABILITY ANALYSIS

2D In the absence of a mechanical driges 0, the problem is
o= ) reduced to the classical RayleighsBed problem[22].
9T=—(U-V)T+«V-T, (2.2 Heating of the device from below gives rise to an unstable
. density stratification and convection sets in beyond a critical
V-i=0, (2.3 Rayleigh numbeR;=1708. Due to the up-down symmetry

mentioned above, the vertical dependence of the hydrody-

whered(r,t)=(u,v,w) is the velocity fieldp(r,t) the pres- namic eigenfunctions is of definite paritw, 6 even andu,
sure, andr (f,t) the temperature field. For the time being, thev odd).
material parameters, kinematic viscosity thermal expan- If the fluid layer is subcritically heated from below or by
sion coefficiente, and heat diffusivityx are assumed to be heating from above, convective motion can also be obtained
constant. This is the essence of the OB approximation. Ay applying a simultaneous gravity modulatiasif0). Gre-
thermal drive of the setup is imposed by an external temperasho and Sanj3] used a Galerkin technigue for an approxi-
ture differenceA T between the covering plates. We indicate mative treatment of the linear stability problem. We make a
heating from above by a negativAT. The apparatus similar ansatz for the hydrodynamic fields
is also subjected to a mechanical drive by shaking it in "
vertical direction. In the comoving frame of reference this w(x,z,t)=X(t)e"Cy(2),
gives rise to a time-dependent gravity modulation ) :
g(t)=go(1+e coswt), wheree and w are the mechanical u(x,2,) = (i/K)X(1)e"*2,C4(2),
control parameters.

For weak mechanical and thermal drive, the fluid remains

in its rest statei=0, where the pressurp balances the 0(x,z,t)=Y(t)e** cos 7z, (3.1

time-dependent gravity field(t). The temperature profile of ) o

this purely conductive state varies linearly according towhere k denotes a wave number in lateral direction and

T=T,—2zAT/d, whereT, denotes a reference temperature C1(2) the first Chandrasekhar functi¢@2]. The latter one is

in the midplane between the plates. more approprlat@2_3]_ than the trigonometric functions used
In order to investigate the nonlinear convective propertiedn Ref. [3]. Linearizing Egs.(2.4) and (2.9, inserting Eq.

it is useful to introduce the deviatioffrom the conductive (3.1, and projecting onto the modes leads to a coupled set of

temperature profile. Furthermore we use dimensionless uni@'dinary differential equations for the amplitudg$t) and

where length is scaled hy, velocity by «/d, time byd%/«,  Y(1),

pressure byx?/d?, and temperature byv/(agod®). The

v(X,z,t)=0,

=— + + .
pressure in Eq(2.1) can be eliminated by operating twice IX hioX+hpo(1+e coswb)Y, 3.2
with curl, giving g Y=—hgY+h,RX. 3.3
i — dydy The coefficientd; are given in Appendix A. By solving Eq.
atVZG=€X€X(G~ *)GJFU& —dyd, | @+ aV4i, (3.2 for X and inserting the result in Eq3.3), the linear
Jo | g24 2 stability problem is reduced to the evolution equation of a
oy (2.4  Parametrically driven oscillatofMathieu oscillatoy
. Y+2yY+(8+a coswt)Y=0, (3.4
30=—(G-V)®+Rw+V?0. (2.5

with k-dependent coefficients:
Here we have introduced two dimensionless numbers, the

— 12 2
Rayleigh numbeR=(agod3AT)/(v«) measures the ther- 2y=k*+m+ahy(k), 3.9
mal drive, while the Prandtl number= v/« characterizes _ 2, .2
! = +7°)— .
the fluid. The equations of motion are supplemented by the o=chy(K)(kK™+ %)~ ohs(lR, 3.6
boundary conditions a=—ohg(k)eR. (3.7
0®=0, w=0, J,w=0 The stable (unstable¢ conductive state atR<R.=1708
(R>R.) corresponds to the stable hangifignstable in-
at verted equilibrium position of the oscillator. From the
theory of the Mathieu oscillator it is known that a modula-
z=%*1/2, (2.6 tion of gravity can both stabilize the unstable rest state and

destabilize the stable rest state. It is the latter case which we
corresponding to rigidi.e., no-slip, perfectly heat conduct- are dealing with in the following.
ing plates at the bottom a=—1/2 and the top at=1/2. To proceed with the linear analysis we invoke the Floquet
Note that the equations of motion and boundary conditionsheorem and write the solutions of E®.4) in the form
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FIG. 1. Critical Rayleigh number as a function of the modula- 2 i
tion frequency for fixed modulation amplitudesw?=10"%, 10™4, 0 . 1
and 10 % and Prandtl number= 7. The Rayleigh number is nega- 30 100 1000
tive since heating is imposed from above. Dashed lines correspond w0

to the results of Cleveet al. [8]. Capital lettersS and H denote

subharmonic and harmonic resonances. A few bicritical points are FIG- 2. Critical wave number as a function of the modulation
indicated by symbols. frequency for fixed modulation amplitudesw?=10"%, 104, and

103, See Fig. 1 for further details.
+
Y(t)=eMP(t)=e* >, p,enet. (3.9  functions[taking four Galerkin modes in E@3.1) instead of
n=-w= only ong. The instability branches missing in RE8] might
be due to an insufficierit resolution in the minimum finder
P(t) is a periodic function with the period®? w of the drive  for k.. In Fig. 3 we explain a typical subharmonic to har-
and u is the Floguet exponent. As E@3.4) is of second monic transition(open circle in Fig. 1by means of the neu-
degree, only two Floquet multipliers are possible. With thetral curvesR(k): For an excitation frequency =245 [Fig.
requirement of a neutrally stable solutigstability bound-  3(a)] the outer left subharmonic tongue provides the absolute
ary), they have to be- 1 corresponding to the Floquet expo- minimum and thus determind®, andkS. As w is reduced
nentsu=0 or u=iw/2. This is the reason the Mathieu 0s- [Fig. 3)] this tongue retracts until its minimum reaches the
cillator resonates either harmonically or subharmonicallyjg,e| of the adjacent harmonic tongue. This is the bicritical
with respect to th? external dr_i\[e4]. In the f(_)rmer(lattelj situation, where the wave number discontinuously jumps
case integralhalf-integra) multiples of the drive frequency kS to k" (see Fig. 2 During a further reduction o

gcontnbéjte to the !ipurlerng'?[)tec'grljtmtlﬁz(t).(gan)odgﬁglg the [Fig. 3(c)] the harmonic instability preempts the subhar-
ourier decomposition ofP(t) into Eg. (3.4) yields an monic one. Eventually the latter one transforms into an isle

Lnflnl_te-dltrFZeArfflonilhetlrg]]env_alue plro(ta)clae(:llll S |dn_f|n|te d% before disappearing. By reducing even further the domi-
erminan b k’ W('j th € e;gelnvau ¢ eper:j 'n% on the nating harmonic tongue also starts retracting until it is pre-
wave numbek and the control parametessand w. A mini- empted by the next adjacent tongue, etc.

mization ofR(k,e,w) with respect t yields the threshold
R.(g,w) and the critical wave numbé«;(e,w). For practi-

cal purposes the infinite determinant can be approximated by 0z
an appropriate cutoff. We used up to 120 Fourier modes to 40
achieve an accuracy of a few percent. In Fig. 1 the critical =y
Rayleigh numbeR; is shown as a function of the modula- g ol

tion frequencyw, while Fig. 2 depicts the corresponding
critical wave numberk.|. To compare with earlier work 10 |
[3,8] we use the shaking elevatiot w? as a mechanical [
control parameter instead of the acceleratiatself. At large
frequenciesw the system always responds subharmonically
(S), while we observe an alternating sequence of harmonic
(H) and subharmonic instabilities towards smaller frequen-
cies. This observation is in partial compliance with the ear-
lier results of Cleveet al.[8] (dashed lines in Figs. 1 and.2
While their subharmonic branch at highagrees well with
our findings, their alternating cascade towards smadles
only rudimentarily reproduced. We confirmed our calcula-
tion within an accuracy of 3.5% with the help of control  FIG. 3. Bicritical transition(O in Fig. 1) in the marginal stabil-
runs, done with an improved spatial resolution of the eigenity chartR(k). From(a) to (d) the forcing frequency is reduced.

-R/1000
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Fig. 4(b) consists of two superimposed sets of squad&s
rotated relative to each othewith respective wave numbers
|kS| and |kH|. The 90° angle betweek; and k5 requires a
wave-number ratio ok"/kS=v2 at the bicriticality. In Fig. 5

we demonstrate how this ratio can be tuned by varying the
driving elevations/ w?. We read off that the desired value of
v2 is achieved by the open triangle bicriticalilsee Fig. 1 at

the following control parameters:

el 0?=18.3266x 1073,
»=65.6914, 4.2

whereR = — 925.945,k3=3.03, andk!=v2k$=4.28[25].
The cross resonance discussed so far is not the only possible
triad wave-vector coupling. We observe that three wave vec-
tors of equal length may also resonate if their mutual en-
closed angle is 120°. We denote this mechanism, which
forces hexagonal structurdd9,26,20,2], as inner reso-
nance, since only wave vectors of the same length are in-
volved. Note that the inner resonance works only among
(b) modes withharmonictime dependence, whereas thar-
monicsymmetry prohibits any inner resonance. Besides test-
FIG. 4. Triad wave-vector couplingi@ Two subharmonic ing for an appropriate temporal behavior, the vertical depen-
modes with wave vectoris; k3 resonate with a harmonic mode of dence of the modes must also be checked, whether it allows
wave vectok!' . (b) If the angle betweek? andk3 is 90° a second  a successful triad interaction. Indeed, the OB approximation
harmonic wave vectok} contributes to the resonant energy ex- turns out to be problematic: As mentioned above, the up-

change. down symmetry of the system implies evésdd z depen-
dencies of the eigenfunctions, #(u,v). Accordingly, the
IV. THREE-WAVE-VECTOR RESONANCE AT THE convective derivativei-V in the evolution equations is par-
BICRITICALITY ity inverting and thus the quadratic nonlinearities cannot

couple todw and 4,6 in Egs.(2.4). To overcome this diffi-

In this section the focus is on the bicritical situations in- . .
dicated in Fig. 1 by symbols. The idea is that two subhar-CUIty we release the OB approximation and allow a

monic modes with lateral wave vectde andk3 nonlinearly temperature-dependent viscosity

interact \_/vith a harmonic mode; by virtue_of a triad reso- W(T)=v[1—vy(T—To)]. (4.2)
nance[Fig. 4@)]. The resonance mechanism is most effec-

tive if kI andk5 enclose an angle of 90° as a second harThe advantage of considering the viscosity in favor of the
monic wave vectonk? can contribute to the coupling=ig.  other material parameters is that the evolution equatior for
4(b)]. Since this interaction mechanism couples subharmoniand thus the basic conductive state remain unchanged. The
and harmonic modes we denote it as “cross” resonance. Theecessary modifications of the theory are thus restricted to
convection pattern driven by the cross resonance depicted the Navier-Stokes equation, which transform¢2a]

2.5 T

20 O\O\O‘Q& ]

1.0 t : 10
\ 1 10° FIG. 5. Wave-number ratik!/k?, critical
= Rayleigh numbeR., and modulation frequency
3 110 '3 o as a function of the modulation amplitueéw?
3 10° for a few bicritical points shown in Fig. 1. The
400 ,[ : 10% arrow indicates the parameter value where
' k/k3=v2. Prandtl number is fixed at=7.
300 r E
o
m
g 200 | 1
100
%0° 10" 10° 10*
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atui:_(U'V))Ui+0'0V2Ui—(9ip+0'o(1+ECOSU.)t) ky

X @ 5i,3+ a'l(TOZVZUi + 0'100(8Zui + ﬁ,W)

(oX] 2 (o] > > N
—E(ro@V Ui—EO'()V'(VUi'f'(?iU). (43)

Here, o= vy/k substitutes the former Prandtl number
The supplementary linear and nonlinear terms are weighted
by the dimensionless coefficient;=v,AT, which quanti- k
fies the NOB effects.o; is supposed to be smalk.g., S
o,=0.2 for a water layer subjected to a temperature differ-

ence of 10 K. Both the linear and the nonlinear NOB con- H
tributions break the up-down symmetry of the system. The
linear terms generate perturbations of ordgrin the eigen-
functionsw and 4, which destroy the even parity of the ver-
tical dependence. A small correction of ordef to the criti-

cal Rayleigh numbeR. results[27]. We want to ignore
these small effects in the following discussion.

FIG. 6. Lateral wave vectors for a minimum Galerkin model,
which allows solutions in the form of lines, squares, hexagons, or
quasiperiodic patterns with a 12-fold symmetry axis.

V. NONLINEAR PATTERN SELECTION

. . . L g "
We are interested in convection patterns close to a blcrltl-atxf: —100XS+ s0o(1+ € cos wt)Yfﬂzﬁlgo(yi X4
cality, where modes with different wavelengths compete. In
the presence of NOB effects the dominating nonlinear inter- o
action process close above the onset of instability is the triad + xg*yf) +j3_100(yg* XS+ X§* Y5
wave-vector coupling, which appears here in the form of the R
inner and the cross resonance. Both mechanisms compete as
) .01 H* \¢S_ yS* yH

they try to enforce hexagonal and square patterns, respec +ia=oo(Ys XZ3+X7 Y5),
tively. A minimal Galerkin model, which allows the two R
coupling mechanisms to evolve freely, requires six lateral

) ’ _ _ oy X
F%urler modes on each unstable wave-number cjkcleand IX == jea Xt +jooo(1+ € coswt)Y! +J7300(Y§ XS
|k™|. We therefore make the ansatz

o . 01 * *
+X5 Y3 +js gz oo(Ys X5+XE V),

6 6
— — .°S - s
G=VxVx&,| > XS+ > xHeknT+c.c.|Cy(z), . . .
n=1 n=1 A YT= 1R}~ ] 11X3Z— ] 1oY5,
. . GYT =] 10RX =1 XTZ—j1aYT
0= vSekn+> YHekn Tt c.c.|cosmz 6 X
n=1 n=1 atz:—j142+j11i§1 (YIXS+YT XM +ce. (5.2
+Z sin 2rrz. (5.2

The remaining 20 equations ¢, X, Y> Y (i=2,...,6)

follow by cyclic permutation of the mode indices. The nu-
The above representation of the velocity field implies that thenerical values of the coefficients are given in Appendix B.
vertical component of the vorticity vanishes. For large To investigate the dynamics and pattern selection of this
Prandtl numbers this is a reasonable approximd@dh The  model we integrated the equations numerically with a fourth-
orientation of the lateral wave vectdk§ andk'! is shown in  order Runge-Kutta method. Starting from random initial val-
Fig. 6. In analogy to the three-mode Lorenz mo®8] for  ues we found two types of stable patterns: squares or a qua-
convective rolls, we have introduced the mafléo provide  siperiodic structuréFig. 7). The bifurcation diagram is given
nonlinear saturation. The model ansézl) gives sufficient in Fig. 8. The primary bifurcation is backwards towards a
freedom for the system to develop a competition betweersquare convection pattern as shown in Fi@).7As outlined
line, square, hexagonal, or quasiperiodic patterns of 12-folih Fig. 4(b), the structure consists of two sets of squares with
rotational symmetry. wave numbergkS| and, respectively|k"|, rotated by 45°

Inserting the ansatz into Eqgt.3) and(2.5), and project- relative to each other. All remaining modes of the model but

ing onto the modes, leads to the following system of 25Z(t) exhibit zero amplitude. The observation of squares in-
ordinary evolution equations: dicates that the cross resonance dominates close to the onset
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of the instability. The computer integration of E¢S.2) also
provides the time dependences of the excited modes: For the
square pattern we find that the subharmdh@rmonig sym-
metry of the modes valid at the onset remains preserved in
the weakly nonlinear regime.

At R~ —1000 a sudden break of this temporal symmetry
occurs: The harmonitsubharmonigmodesXt, Y™ (X5,Y9)
receive additional half-integdinteged frequency contribu-
tions in their Fourier sprectra. Due to this bifurcation, the
inner resonance amorgmodes is no longer prohibited, and
both resonance mechanisms are able to take full advantage of
the nonlinear coupling. As a result we observ&Rat=1010
a convective structure, in whickll modes depicted in Fig. 6
are excited. Figure (B) shows a shadowgraph of the corre-
ponding temperature mode, which exhibits a 12-fold orien-
tational order. By decreasing the control parameter again we
find that the transition between squares and the quasiperiodic
patterns is slightly hysteretic.

VI. SUMMARY AND DISCUSSION

In this paper we investigate slightly nonlinear pattern for-
mation in Rayleigh-Beard convection under gravity modu-
lation. We concentrate on bicritical situations, where a har-
monic and a subharmonic instability compete. The critical
wave number&k! andk?, under which the two instabilities
occur, can be controlled externally. In the case of non-
Oberbeck-Boussinesq fluidge.g., with a temperature-
dependent viscosiiythe governing nonlinear interaction pro-
cess is a three-wave-vector resonance. We distinguish
between a cross resonance, coupling harmonic to subhar-

FIG. 7. Density plots of the temperature field as observed in thg,onic modes. and an inner resonance. where only modes of

numerical simulation of the model Eq&.2) with ¢ and w accord-
ing to Eq.(4.1). (& Stable square pattern. Only the contribution of
the subharmonic pattern witk=Kg is visible. The relative ampli-
tude of the squares witk=k, is only 30%. See Fig. @) for a
Fourier decompositionb) The quasiperiodic structure.

30 . .
20 | 1
E(I)
10 | 1
0 1 1
900 T 950 1000
R.=-925 "R

1050

the same wavelength are involved. While the inner resonance
always forces hexagonal structures, the preferred pattern
driven by the cross resonance depends on the wave-number
ratio |k"/k3|. This value can be controlled by varying the
amplitude and frequency of the gravity modulation. Here we
consider the casi"/k| =v2 for which the cross resonance
favors squares. Our aim is to show how the bicritical situa-
tion can be used to force convective structures of nontrivial
symmetry.

Our investigation is performed in terms of a Galerkin
model. By expanding the spatial dependence of the hydrody-
namical fields in an appropriate set of test functions, the
Navier-Stokes equations are reduced to a set of 25 ordinary
differential equations. This is a generalization of the three-
mode Lorenz mode[28] for convective rolls. The mode
truncation has been chosen such that the cross and inner
resonance can freely evolve and compete. Regular convec-
tion patterns in the form of rolls, squares, hexagons, as well
as quasiperiodic structures are possible solutions of the
model. The stability finally depends on the dynamics of the
model, which is investigated numerically. It turns out that the
cross resonance mechanism prevails close to the onset of the
instability and square patterns appear at first. At higher Ray-
leigh numbers, we observe a secondary hysteretic transition

FIG. 8. Bifurcation diagram resulting from integration of the towards quasiperiodic patterns. For this pattern the inner and
model Egs.(5.2. Squares(diamonds indicate stable square pat- the cross resonance can take full advantage of the triad wave-
terns with the subharmonic or harmonic time dependence beinyector coupling.
preservedbroken. Triangles denote stable quasiperiodic patterns We point out that our model approximation suffers from

as shown in Fig. (b).

the drawback of any few-mode Galerkin appoximation: If
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some pattern appears to be stable, it is stable in a restricted  d,=(\%2—k?)2%¢c;+ (A%2+k?)%c,— N (k*+A%)cy, (AB)
sense, namely, with respect to “internal” perturbations:

Only those disturbances which can be built up by the partici- dy=(A\%2—k?)c;—(N2+k?)c,+ kg, (A7)
pating Galerkin modes can destabilize a solution. External

mechanismse.g., long wavelength instabilities like Eckhaus ci=(N+sinh\)/(2\ cosh\/2), (A8)
or zigzag are not covered, because the lateral wave numbers

of the participating Galerkin modes is fixed. This is similar Co=(N+sin\)/(2\ cos\/2), (A9)
to the known three-mode Lorenz model forred convec- _ _

tion, which is also unable to explain the Eckhaus instability. - sinh \/2 cos\/2+cosh\/2 sin\/2 (A10)

So far, we cannot exclude that external mechanisms could

destabilize any predicted pattern and prevent its experimental

observability. N=4.730 04. (A11)
Another approximation in our model is the use of Galer-

kin modes withdefinite parity of the z dependencies. AS AppENDIX B: COEFFICIENTS IN THE 25-MODE MODEL
outlined above, this assumption is strictly valid only for OB

X cosh\/2 cosA/2 ’

fluids, where the up-down symmetry of the system holds. In op=7, (B1)

NOB fluids the parity of the eigenfunctions of the stability

problem is no longer preserved. In our consideration we have 0,=0.86, (B2)

ignored these effects since they are weighted by the small

NOB parameterr;. A consistent way of taking these effects j1=37.7371, (B3)

into account would have doubled the size of our model sys-

tem. j»=16.3287, (B4)
Finally we mention that not all possible NOB effects have )

been considered in our model. As a representative example 13=15.1799, (BS)

we introduced a temperature dependence of the viscosity, .

because it was easy to implement even though the selection 14=9.54 917, (B6)

mechanism discussed here applies to any NOB effect. So far js=0.421 322, (B7)

our discussion should be understood as a recipe to generate
interesting nonlinear structures in a convection experiment, j6=42.0464, (B8)
rather than giving an exact quantitative prediction.

j;=22.8824, (B9)
APPENDIX A: COEFFICIENTS IN THE LINEAR
EQUATIONS jg=19.0064, (B10)
h;=—d(k)/dy(k), (A1) jo=0.590 41, (B11)
h,= — 4wk Y[ dy(K) (N4 — )], (A2) j10=0.9862, (B12)
hy=k2+ 72, (A3) j11=5.0989, (B13)
h,=8m\2/(\N*— 7%, (A4) j1,=19.0457, (B14)
hs= — (3272k°A ) /[ do(k) (N — 7%)?], (A5) j13=28.2217, (B15)
with j14=39.478. (B16)
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